First Semester B.E. Degree Examination, May/June 2010

Engineering Mathematics - I

Time: 3 hrs.

Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions only on OMR sheet page 5 of the Answer Booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.

PART – A

1. a. i) The \(n \)th derivative of \(\frac{1}{x^p} \) is

A) \(\frac{(-1)^p (p+n)!}{(p-1)! x^{p+n}} \)
B) \(\frac{(-1)^p (p+n-1)!}{(p-1)! x^{p+n}} \)
C) \(\frac{(-1)^p (p+n-1)!}{(p-1)! x^{p+n}} \)
D) \(\frac{(-1)^p (p+n-1)!}{p! x^p} \)

ii) The \(n \)th derivative of \(e^x \) is

A) \(a^n e^{ax} \)
B) \(ae^x \)
C) \(a^2 e^x \)
D) \(e^x \)

iii) The angle between radius vector and tangent is

A) \(\tan \phi = \frac{d\theta}{dr} \)
B) \(\tan \phi = r^2 \frac{d\theta}{dr} \)
C) \(\tan \phi = \frac{1}{r} \frac{d\theta}{dr} \)
D) \(\tan \phi = \frac{dr}{d\theta} \)

iv) The curve \(r = \frac{a}{1 + \cos \theta} \) intersect orthogonally with the following curve:

A) \(r = \frac{b}{1 - \cos \theta} \)
B) \(r = \frac{b}{1 + \sin \theta} \)
C) \(r = \frac{b}{1 + \sin^2 \theta} \)
D) \(r = \frac{b}{1 + \cos^2 \theta} \)

b. Find the \(n \)th derivation of \(y = \sin h 2x \sin 4x \).

c. If \(y = \sin h (m \log(x + \sqrt{x^2 + 1})) \), prove that \((x^2 + 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0 \).

d. Find the pedal equation of the curve \(r = a \cos (m \theta) + a \sin (m \theta) \).

2. a. i) If \(u = \log \left(\frac{x^2}{y} \right) \), then \(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \) is equal to

A) 2u
B) 3u
C) u
D) 1

ii) If \(u = x^3 + y^3 \), then \(\frac{\partial^3 u}{\partial x^3 \partial y} \) is equal to

A) -3
B) 3
C) 0
D) 3x + 3y

iii) If \(x = r \cos \theta \), \(y = r \sin \theta \), then \(J\frac{\partial (x,y)}{\partial (r,\theta)} \) is equal to

A) 1
B) r
C) \(\frac{1}{r} \)
D) 0

iv) If an error of 1% is made in measuring its length and breadth, the percentage error in the area of a rectangle is

A) 0.2%
B) 0.02%
C) 2%
D) 1% (04 Marks)

b. If \(z = e^{ax+by} + (ax - by) \), prove that \(b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz \).

(04 Marks)
4. Find the surface area of the solid got by revolving the arch of the cycloid \(x = a(t + \sin t), \)
\(y = a(t + \cos t) \) about the base.
(06 Marks)

d. Evaluate \(\int_{\alpha}^{\pi} \arctan \left(\frac{\tan^{-1} \alpha}{x(1 + x^2)} \right) \, dx \) where \(\alpha \geq 0 \) using the rule of differentiation under the integral sign.
(06 Marks)

PART – B

5. a. i) The order of the differential equation \(\left(\frac{dy}{dx} \right)^2 - 5 \frac{dy}{dx} + 4y = 0 \) is
 A) 2 \hspace{1cm} B) 0 \hspace{1cm} C) 3 \hspace{1cm} D) 1

 ii) The integrating factor of the differential equation \(\frac{dy}{dx} + y \cos x = \frac{\sin 2x}{2} \) is
 A) \(e^{\sin^2 x} \) \hspace{1cm} B) \(e^{\sin x} \) \hspace{1cm} C) \(e^{\sin x} \) \hspace{1cm} D) \(\sin x \)

 iii) The solution of the differential equation \(\frac{dy}{dx} = \frac{y}{x} - \csc x \) is
 A) \(\cos \left(\frac{y}{x} \right) - \log x = c \) \hspace{1cm} B) \(\cos \left(\frac{y}{x} \right) + \log x = c \)
 C) \(\cos^2 \left(\frac{y}{x} \right) + \log x = c \) \hspace{1cm} D) \(\cos^2 \left(\frac{y}{x} \right) - \log x = c \)

 iv) By replacing \(\frac{dr}{d\theta} \) by \(-r^2 \frac{dr}{d\theta} \) in the differential equation \(f(r, \theta, -r^2 \frac{dr}{d\theta}) = 0 \), we get the differential equation of __________.
 A) Orthogonal trajectory \hspace{1cm} B) Polar trajectory \hspace{1cm} C) Parametric trajectory \hspace{1cm} D) None of these.
 (04 Marks)

b. Solve: \((1-x^2) \frac{dy}{dx} - xy = 1 \).
 (04 Marks)

c. Solve: \(xdx + ydy + \frac{x dy - y dx}{x^2 + y^2} = 0 \).
 (06 Marks)

d. Find the orthogonal trajectories of the family of curves \(r = 2a(\cos \theta + \sin \theta) \) where \(a \) is a parameter.
 (06 Marks)

6. a. i) The series \(\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \ldots \ldots \) converges if
 A) \(p > 0 \) \hspace{1cm} B) \(p < 1 \) \hspace{1cm} C) \(p > 1 \) \hspace{1cm} D) \(p \leq 1 \)

 ii) \(\sum \sin \left(\frac{1}{n} \right) \) is
 A) convergent \hspace{1cm} B) divergent \hspace{1cm} C) oscillatory \hspace{1cm} D) none of these

 iii) The convergence of the series \(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{5}} + \ldots \ldots \)
 A) Leibnitz test \hspace{1cm} B) Raabe's test \hspace{1cm} C) Ratio test \hspace{1cm} D) Cauchy's root test

 iv) If a series \(\sum y_n \) is such that \(S_n \) does not tend to unique limit as \(n \to \infty \), we say that the series \(\sum y_n \) is
 A) convergent \hspace{1cm} B) divergent \hspace{1cm} C) oscillatory \hspace{1cm} D) none of these
 (04 Marks)

b. Determine the nature of the series \(\sum \frac{1}{\sqrt{n^2 + 1 - n}} \).
 (04 Marks)

3 of 4