First Semester B.E. Degree Examination, June/July 2015
Engineering Mathematics – I

Time: 3 hrs.
Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.

PART – A

1 a. Choose the correct answers for the following: (04 Marks)

i) If \(y = x^{2n} \), \(y_{n+1} \) is equal to __________
 A) \(0 \) B) \(\frac{n!}{(2n)!} x^n \) C) \(\frac{2n!}{(n-1)!} x^{n-1} \) D) \(\frac{2n!}{(n-1)!} x^{n-1} \)

ii) If \(y = x^n \log x \) then by Leibnitz theorem \(xy_{n+1} = ________ \)
 A) \((n-1)! \) B) \((n+1)! \) C) \(n! \) D) \(0 \)

iii) If \(f(x) = \sqrt{x} \), \(g(x) = \frac{1}{\sqrt{x}} \) then by Cauchy’s mean value theorem \(C = ________ \)
 A) \(\sqrt{a-b} \) B) \(\sqrt{a+b} \) C) \(\sqrt{ab} \) D) \(\frac{a}{b} \)

iv) By Maclaurin’s series \(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \) is equal to,
 A) \(e^x \) B) \(\sin x \) C) \(\cos x \) D) \(\log(1+x) \)

b. If \(y = \log(x + \sqrt{1 + x^2}) \) Prove that \((1 + x^2)y_{n+2} + 2(n + 1)xy_{n+1} + n^2 y_n = 0 \) (04 Marks)

c. State Lagrange’s mean value theorem, and find the number ‘C’ in [0, 4] when \(f(x) = (x-1)(x-2)(x-3). \) (06 Marks)

d. Expand \(\log_e x \) in the powers of \(x-1 \) and hence evaluate \(\log_e(1.1) \) by taking up to 4th degree terms. (06 Marks)

2 a. Choose the correct answers for the following: (04 Marks)

i) \(\lim_{x \to \frac{\pi}{2}} \frac{\sec^2 x - \tan x}{\sin x - \cos x} = \) __________
 A) \(0 \) B) \(1 \) C) \(\pi/2 \) D) \(\pi \)

ii) The angle between radius vector and the tangent to the curve \(r = \sin \theta + \cos \theta \) is __________
 A) \(\frac{\pi}{4} - \theta \) B) \(\frac{\pi}{4} + \theta \) C) \(\frac{\pi}{2} + \theta \) D) \(\frac{\pi}{2} - \theta \)

iii) The derivative of arc length for the curve \(x = f(y) \) is __________
 A) \(\sqrt{1 + y^2_1} \) B) \(\sqrt{x^1_1 + y^2_1} \) C) \(\sqrt{1 + x^2} \) D) \(\sqrt{1 - y^2_1} \)

iv) The radius of curvature of the curve \(2ap^2 = r^3 \) is __________
 A) \(\frac{3}{2} \sqrt{2ar} \) B) \(\frac{3}{2} \sqrt{ar} \) C) \(\frac{2}{3} \sqrt{ar} \) D) \(\frac{4ap}{3r} \)

b. Evaluate \(\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right) \). (04 Marks)

c. Find the angle of intersection between the curves \(r^3 \sin 2\theta = 4 \) and \(r^2 \sec 2\theta = 16 \). (06 Marks)

d. Find the radius of curvature at any point t on the curve \(x = a \left(\cos t + \log \tan \frac{t}{2} \right), y = a \sin t \). (06 Marks)
3 a. Choose the correct answers for the following:
 (04 Marks)
 i) If \(u = x^2 + y^2 + z^2 \) then \(\frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^3 u}{\partial z^3} = \)
 A) \(2(x + y) \)
 B) \(2(x + 1) \)
 C) \(2(x + z) \)
 D) \(2(y + z) \)
 ii) For \(u = x(1 - y), V = xy \) the value of Jacobian is,
 A) \(x \)
 B) \(x^2 \)
 C) \(xy \)
 D) \(\frac{x}{y} \)
 iii) In the Taylor’s expansion of \(f(x, y) = xy^2 + \cos(xy) \) about \(\left(1, \frac{\pi}{2} \right) \) the value of the derivative \(\frac{\partial^2 f}{\partial x \partial y} \) at the given point is
 A) \(\pi + 1 \)
 B) \(\pi + 2 \)
 C) \(\pi - 1 \)
 D) \(\pi - 2 \)
 iv) For \(f(x, y) = x^3y^2(1 - x - y) \), one set of stationary values are,
 A) \(\left(\frac{1}{2}, \frac{1}{2} \right) \)
 B) \(\left(\frac{1}{3}, \frac{1}{3} \right) \)
 C) \(\left(\frac{1}{3}, \frac{1}{4} \right) \)
 D) \(\left(\frac{1}{2}, \frac{1}{3} \right) \)

b. If \(u = f(y - z, z - x, x - y) \), find the value of \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} \)
 (04 Marks)

c. If \(u = x + y + z, \ u v = y + z, \ u v w = z \) then find the value of \(\frac{\partial (x, y, z)}{\partial (u, v, w)} \).
 (06 Marks)

d. A rectangular box open at the top is to have a volume of 32 cubic units, find the dimensions of the box requiring least material for its construction.
 (06 Marks)

4 a. Choose the correct answers for the following:
 (04 Marks)
 i) The representation \(i \frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} + k \frac{\partial f}{\partial z} \) is for
 A) \(\nabla \cdot f \)
 B) \(\nabla \times f \)
 C) \(\nabla^2 f \)
 D) \(\nabla f \)
 ii) If \(\text{div} \ V = 0 \) when \(V \) is the volume then such a point of function is called
 A) Rotational
 B) Irrotational
 C) Solenoidal
 D) Orthogonal
 iii) \(\text{curl (grade)} \) is denoted by,
 A) \(\nabla \cdot (\nabla \phi) \)
 B) \(\nabla \times (\nabla \cdot \phi) \)
 C) \(\nabla \times (\nabla \phi) \)
 D) \(\nabla \cdot (\nabla \phi) \)
 iv) If \(\hat{e}_1, \hat{e}_2, \hat{e}_3 \) are the base vectors then the positive numbers \(h_1, h_2, h_3 \) are called the,
 A) volume factors
 B) scale factors
 C) area factors
 D) acceleration factors

b. A vector field is given by, \(\vec{F} = (x^2 - y^2 + x)i - (2x + y)j \), show that the field is irrotational.
 (04 Marks)

c. Prove that \(\text{div} (\text{curl} \ A) = 0 \).
 (06 Marks)

d. Prove that cylindrical coordinate system is orthogonal.
 (06 Marks)

5 a. Choose the correct answers for the following:
 (04 Marks)
 i) If \(I(\alpha) = \int_0^1 x^\alpha \frac{dx}{\log x} \) then \(\frac{dI(\alpha)}{d\alpha} = \)
 A) \(\frac{1}{1 - \alpha} \)
 B) \(\frac{1}{1 + \alpha} \)
 C) \(\frac{1}{1 + \alpha^2} \)
 D) \(\frac{1}{1 - \alpha^2} \)

PART - B
ii) The value of \(\int_0^\frac{\pi}{2} \sin^4 x \, dx \) is ____________

A) \(\frac{3\pi}{8} \)
B) \(\frac{4\pi}{5} \)
C) \(\frac{5\pi}{8} \)
D) \(\frac{6\pi}{7} \)

iii) The volume generated by revolving \(y = f(x) \) between \(x = a \) and \(x = b \) is \(V = \) ____________

A) \(\int_a^b y^2 \, dx \)
B) \(\int_a^b \pi y^2 \, dx \)
C) \(\int_a^b \pi y \, dx \)
D) \(\int_a^b \pi x^2 \, dx \)

d. Find the entire length of the curve \(x^{\frac{3}{5}} + y^{\frac{3}{5}} = a^{\frac{3}{5}} \).

iv) Special points on \(x \) and \(y \) axes are ____________ for the curve \(x^{\frac{3}{5}} + y^{\frac{3}{5}} = a^{\frac{3}{5}} \).

A) \(\pi a^2 b \)
B) \(\pi ab^2 \)
C) \(\pi a^2 b^2 \)
D) \(\pi ab \)

b. Evaluate \(\int_0^\infty \frac{\tan^{-1} ax}{x(1 + x^2)} \, dx \) using differentiation under integral sign. (04 Marks)

c. Evaluate \(\int_0^{\frac{2a}{2}} x^2 \sqrt{2ax - x^2} \, dx \). (06 Marks)

d. Find the entire length of the curve \(x^{\frac{3}{5}} + y^{\frac{3}{5}} = a^{\frac{3}{5}} \). (06 Marks)

6 a. Choose the correct answers for the following:

i) Solution of \((2x + 1) + (2y + 1) \frac{dy}{dx} = 0 \) is ____________

A) \(x^2 + y^2 + x + y = C \)
B) \(2x^2 + 2y^2 + x + y = C \)
C) \(\frac{x^2}{2} + \frac{y^2}{2} + x + y = C \)
D) \(x^2 + y^2 + 2x + 2y = C \)

ii) For the linear differential equation \(\frac{dx}{dy} + P(y)x = Q(y) \) the integrating factor is ____________

A) \(e^{\int P(x) \, dx} \)
B) \(e^{\int P(y) \, dy} \)
C) \(e^{\int P(y) \, dy} \)
D) \(e^{\int Q(y) \, dy} \)

iii) In the exact differential equation, choosing \(\frac{1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) \) denotes,

A) function of \(x \) alone
B) function of \(y \) alone
C) function of \(x \) and \(y \)
D) function of \(\frac{x}{y} \)

iv) In the orthogonal trajectory of \(r = f(\theta) \) we replace \(\frac{dr}{d\theta} \) by ____________

A) \(-r \frac{dr}{d\theta} \)
B) \(-r^2 \frac{d\theta}{dr} \)
C) \(-r \frac{d\theta}{dr} \)
D) \(-r^2 \frac{d\theta}{dr} \)

b. Solve \((x + 2y)(dx - dy) = dx + dy \). (04 Marks)

c. Solve \((x^2 + y^3 + 6x)dx + y^2 xdy = 0 \). (06 Marks)

d. Find the orthogonal trajectories of the curve \(r = 4a \sec \theta \tan \theta \) with \(a \) as the parameter. (06 Marks)
7. a. Choose the correct answers for the following: (04 Marks)
 i) If the elements in a square matrix below the main diagonal are zero then it is called ________.
 A) Orthogonal matrix B) Singular matrix
 C) Lower triangular matrix D) Upper triangular matrix
 ii) The rank of the matrix \(A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{bmatrix} \) is ________,
 A) 0 B) 1 C) 2 D) 3
 iii) The system of equations are said to be consistent when,
 A) \(R(A) = R(A : B) \) B) \(R(A) = R(A : B) \) C) \(R(A) < R(A : B) \) D) \(R(A) > R(A : B) \)
 iv) In Gauss Jordan method the coefficient matrix is reduced to ________,
 A) diagonal matrix B) Upper triangular matrix
 C) null matrix D) non-diagonal matrix
b. Test for consistency and solve the system of equations \(x + 2y + 2z = 5 \), \(2x + y + 3z = 6 \), \(3x - y + 2z = 4 \) and \(x + y + z = -1 \). (04 Marks)
c. Find the rank of the matrix \(A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \). (06 Marks)
d. Solve the system of equations by Gauss-Jordan method. \(x + y + z = 9 \), \(x - 2y + 3z = 8 \) and \(2x + y - z = 3 \). (06 Marks)

8. a. Choose the correct answers for the following: (04 Marks)
 i) The Eigen values of the matrix \(A = \begin{bmatrix} -3 & 8 \\ -2 & 7 \end{bmatrix} \) are ________.
 A) 5, -1 B) 5, 1 C) 5, 2 D) 5, -2
 ii) A square matrix \(A \) of order \(n \) is called similar to a square matrix \(A \) of order \(n \) if \(A = PAP^{-1} \).
 A) \(PA^{-1}P \) B) \(P^{1}AP \) C) \(P^{-1}A^{1}P \) D) \(PA^{1}P^{1} \)
 iii) A homogeneous expression of second degree in any number of variables is called ________.
 A) Orthogonal form B) diagonal form C) triangular form D) quadratic form
 iv) If the eigen vector is \((1, 1, 1)\) then its normalized form is ________.
 A) \(\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \) B) \(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \)
 C) \((1,1,1) \) D) \((\sqrt{3}, \sqrt{3}, \sqrt{3}) \)
 b. Find the eigen values and the eigen vectors of the matrix \(\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} \). (04 Marks)
c. Reduce the quadratic form, \(3x^2 + 5y^2 + 3z^2 - 2xy + 2zx - 2xy \) to the canonical form, specify the matrix of transformation. (06 Marks)
d. Find the nature of the following quadratic form, \(x^2 + 5y^2 + z^2 + 2xy + 2yz + 6zx \) (06 Marks)

* * * * *

4 of 4